

Cosine

	GitHub repository [https://github.com/oladotunr/cosine]

	GitHub example repository [https://github.com/oladotunr/cosine-algo]

Cosine is a crypto exchange trading algo framework. It provides a modular framework for implementing custom algorithmic
trading strategies, across either single or multiple execution venues, with support for multiple concurrent pricing
feeds from a variety of market pricing sources.

Cosine can support synchronous and asynchronous execution, and is designed with scalability in-mind via a multiprocess
architecture.

Contents

	Quickstart

	Overview

	Configuration Management

	Pricing Feeds

	Venues

	Pricers

	Strategies

	Strategy: Noddy Floater

	Troubleshooting

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

	Installation

	Using Cosine

	Command Line Arguments

	Configuring The Algo

	Custom Strategies

	Custom Connectivity

Note

All code starting with a $ is meant to run on your terminal.
All code starting with a >>> is meant to run in a python interpreter,
like ipython [https://pypi.org/project/ipython/].

Installation

Cosine can be installed (preferably in a virtualenv)
using pip as follows:

$ pip install cosine-crypto

Note

If you run into problems during installation, you might have a
broken environment. See the troubleshooting guide to Set up a clean environment.

Installation from source can be done from the root of the project with the
following command.

$ pip install .

Using Cosine

Once cosine has been installed, it’s relatively easy to get setup to run it. Before that however, it’s best to get
familiar with the architecture and more information can be found via the Overview section of this documentation.

Once you’re ready you can begin by implementing code similar to the following.

import argparse
from cosine.core.algo import CosineAlgo

def main():
 parser = argparse.ArgumentParser(description='Cosine Algo')
 parser.add_argument("-c", "--config",
 help="Config YAML file required to setup the algo.")
 parser.add_argument("-e", "--env", choices=['DEV', 'TST', 'PRD'],
 help="The execution environment.")
 parser.add_argument("-a", "--appname", default='Cosine Algo',
 help="The name of the application.")
 parser.add_argument("-lf", "--logfile",
 help="The name of the log file. Do not change this unless you know what you're doing.")
 parser.add_argument("-lv", "--loglevel",
 choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'FATAL', 'CRITICAL'],
 help="Log level.")

 parser.print_help()
 args = parser.parse_args()

 app = CosineAlgo(cmdline_args=args)
 app.run()

if __name__ == "__main__":
 main()

In the above code we perform the following actions:

	First we import the argparse [https://docs.python.org/3/library/argparse.html] module to capture the required command line arguments Cosine cares about.

	Then we import the CosineAlgo class, the main application class we need to instantiate to launch the algo.

	In our main function we construct the argument list for consumption and parse it.

	We then instantiate the CosineAlgo class into an object, which we then proceed to run to start the algo execution.

Command Line Arguments

Here’s the set of command line arguments that cosine looks for.

Note

Cosine will by default check the provided cmdline_args keyword parameter of the CosineAlgo
constructor, for the required parameters and if not provided, fall back to the environment variable equivalent
and then a default if none has been provided.

	Command Line Argument

	Environment Variable

	Description

	Type

	–config

	COSINE_CFG

	The path to the configuration file required

	str

	–appname

	COSINE_APP

	The name of the application

	str

	–env

	COSINE_ENV

	The execution environment

	str

	–logfile

	COSINE_LOGFILE

	The path to the file to provide logging into

	str

	–loglevel

	COSINE_LOGLVL

	The filtered log level

	str

Configuring The Algo

Cosine provides a comprehensive set of configurations for setting up and customising the algo. See the
Configuration Management section for more details.

Custom Strategies

Cosine supports the implementation and configuration of custom strategies for use with the algo framework. See the
Strategies section for more details.

Custom Connectivity

Cosine supports the implementation and configuration of connectivity to a multiple custom venues for execution, as well
as to multiple pricing feeds concurrently. See the Venues section to learn more about building and using custom
exchange connectivity. Also check out the Pricing Feeds section to learn more about building consuming custom
feeds to new pricing sources.

Overview

	Architecture

	Event Loop

	Multiprocessing

	Configuring The Algo

	Custom Strategies

	Custom Connectivity

Architecture

Cosine was designed with both scalability and modularity in mind. At The top level is the CosineAlgo a class
which represents top level application construct. Within this are several constructs providing varying layers of
functionality, of which all of that are provided to the core strategy (a derivative of CosineBaseStrategy) for
orchestration of all trading activities. Here’s the list of constructs provided:

	CosineBaseFeed - The base class representing an interface for subscribing to market pricing information, typically from an external data source. Current the CryptoCompareSocketIOFeed has been provided to support pricing feeds across a range of instruments.

	CosinePairInstrument - The class representing a single tradable instrument, representing an asset pair. Or more specifically, a tradable asset, denominated in a secondary quote currency asset type. Both assets derive from CosineTradableAsset base type.

	CosineBaseVenue - The base class representing an interface for connectivity to a market execution venue. It’s expected that such venues would provide a range of markets for trading a set of instruments, as well as providing on-exchange account management of trader balances of inventory. This interface should expose all required access to this functionality and the interface is designed to support either synchronous (blocking) exchange interaction or asynchronous (non-blocking).

	CosineBasePricer - The base class representing an interface to an internal or external source of pricing. Cosine is designed to support sophisticated pricing engines that may consume a wide variety of pricing sources and leverage statistical pricing models to determine theoretical pricing for a given market, or provide pricing leans as a means of integrated risk management within execution of the algo.

	CosineOrderWorker - The class which provides order-working management (e.g. place resting orders, amend orders based on pricing changes and cancel orders) for a specified instrument, against a specified venue.

Event Loop

Cosine is designed to run via an internal event loop. The main process which runs the CosineAlgo instance, kicks off
the set of configured venues and feeds (which may individually create separate processes) as well as creating the
strategy. At which point the algo can run in one of two configurations: system.EventLoop: feed which uses the
feed.Primary: configuration to determine which configured and initialised CosineBaseFeed to use to drive the
event loop. Alternatively the system.EventLoop: timer configurations sets up a periodic timer which kicks the event
loop on a regular interval.

in CosineAlgo
def run(self):

 # setup the algo...
 self.setup()

 # initiate the update loop...
 if self._cfg.system.EventLoop == "feed":

 # here we tick the strategy every time the primary pricing feed ticks...
 self._run_on_primary_feed()
 else:
 # here we tick the strategy every time the timer ticks...
 self._run_on_timer()

 # clean up the algo and exit...
 return self.teardown()

If the system.EventLoop: feed is selected, whenever a pricing update comes in from the pricing feed, the pricing
cache is updated (see the Pricing Feeds section for more details) and the CosineAlgo instance’s _tick_main()
method is called. This call is rate limited by the debounce utility decorator, based on the system.EventLoopThrottle:
configuration value, which represents a minimal inter-arrival rate in seconds.

The _tick_main() represents the main workhouse of the algo, which processing the following business logic in-order:

	Update any configured auxiliary (i.e. non-primary) pricing feeds to build an up-to-date set of pricing caches (feeds subscribe to message updates which are queued and processed on the main process)

	Update all the configured venues (if any have asynchronous components, they will queue inbound events and these update calls will consume the queued events and update order worker states accordingly)

	Update the strategy (this will process any strategy level business logic, see the Strategies section for more details)

Multiprocessing

Cosine is designed to operate within a multi-process setup. The core CosineAlgo provides a framework class called
CosineProcWorkers, which manages and orchestrates all processes for running the various services required by the
algo framework, such as pricing, feeds, exchange connectivity and strategy logic. For example, the BlockExMarketsVenue
(a derived class of CosineBaseVenue) provides two main connectivity protocols: a set of synchronous requests to
control order execution and to query order, market, instrument and pricing information. As well as an asynchronous event
feed for subscribing to pricing changes order state updates and executions, to publish events that are queued and picked
up by the main process for reactive processing (i.e. order-working). In-order to achieve this, the BlockExMarketsVenue
implements a CosineProcWorker derived class (BlockExMarketsSignalRWorker), which handles the blocking
subscription for async updates in a separate process, and events that come in are republished into an event queue for
processing on the main process by the initiating CosineOrderWorker.

The CosineProcWorkers instance can be leveraged by any custom strategy, feed or connectivity layer module, that
requires processing to be done in a separate process, so as to not block the main process event loop. This provides
streamlined execution of the algo, and was designed this way to lay the foundations for maximising performance (e.g.
for HFT algo development), alleviating the costs around frequent context switching as well as the risks of thread/process
starvation inherent with a cooperative multi-threading (aka green threads or co-routines - i.e. Asyncio [https://docs.python.org/3/library/asyncio.html]
concurrency) approach. This also alleviates the performance problems inherent in python multithreading due to the
Global Interpreter Lock (or GIL) [https://wiki.python.org/moin/GlobalInterpreterLock].

Configuring The Algo

Cosine provides a comprehensive set of configurations for setting up and customising the algo. See the
Configuration Management section for more details.

Custom Strategies

Cosine supports the implementation and configuration of custom strategies for use with the algo framework. See the
Strategies section for more details.

Custom Connectivity

Cosine supports the implementation and configuration of connectivity to a multiple custom venues for execution, as well
as to multiple pricing feeds concurrently. See the Venues section to learn more about building and using custom
exchange connectivity. Also check out the Pricing Feeds section to learn more about building consuming custom
feeds to new pricing sources.

Configuration Management

	Configuration Loading

	Configurable Attributes

Configuration Loading

Cosine uses YAML-based configuration to configure the setup of the algo framework. This includes things like pricing
feeds to initialise, the strategy to run, available venues to connect to and more. The configuration file must be provided
upfront and you can inform Cosine how to locate it in one of three ways:

	Direct (Cosine will look for a config file path in the config attribute of the cmdline_args dict argument passed to the CosineAlgo constructor)

	Environment (Cosine with otherwise check for the path in the COSINE_CFG environment variable if it exists)

	Implicit (Cosine will otherwise look for a file called config.yaml in the current working directory of the executed algo)

Configurable Attributes

Here’s the full set of available configurations (complete with group headings per the YAML structure):

all system-level configurations
system:
 EventLoop: <val> # the event loop configuration mode, "feed" or "timer"
 EventLoopThrottle: <val> # event loop rate limit in seconds
 network: # general network level configuration
 ssl: # SSL related configuration
 CertFile: <val> # [optional] path to the SSL certificate authority cert file

general order worker related configurations
orders:
 ActiveDepth: <val> # active depth on each side of book respectively (bid and ask)

set of configured venues (with their contextual configurations) to initialise for use with the order workers
venues:
 cosine.venues.bem: # [optional] the fully qualified module path of the BlockExMarketsVenue (CosineBaseVenue derivative) class to load + configure
 Username: <val> # [venue-specific] the username of the trader account to authenticate against
 Password: <val> # [venue-specific] the password of the trader account to authenticate against
 APIDomain: <val> # [venue-specific] the top-level domain of the BEM venue
 APIID: <val> # [venue-specific] the dedicated APIID for the BEM venue
 ConnectSignalR: <val> # [venue-specific] tells BEM whether to subscribe to the async signalR feed or not, "true" or "false"

the set of configured instruments to work markets in. Order workers will be created against each of these on the relevant venue(s)
instruments:
- "XTN/EUR"
- "RCC/EUR"
- "ETH4/EUR"

the set of configured pricing feeds to connect and subscribe to for market data consumption
feeds:
 cosine.pricing.cryptocompare: # [optional] the fully qualified module path of the CryptoCompareSocketIOFeed (CosineBaseFeed derivative) class to load + configure
 type: <val> # [feed-specific] the type of connection ("stream" only for this feed)
 endpoint: <val> # [feed-specific] the websockets/socket.io endpoint hostname to connect to
 port: <val> # [feed-specific] the port to connect to
 framework: <val> # [feed-specific] the framework for connectivity
 triangulator: <val> # [feed-specific] the REST endpoint to use to pull triangulation info for implying pricing for pairs with no direct subscription
 triangulator_throttle: <val> # [feed-specific] the rate limit for running triangulation queries in seconds
 instruments: # the set of instruments to subscribe to
 "XTN/EUR":
 Ticker: <val> # ticker re-mapping for the base/top-level currency, e.g. "BTC"
 BaseCCY: <val> # [optional] forces the feed to e.g. if the value is "ETH" for an RCC/EUR pair, subscribe to RCC/ETH and then run triangulation on each price tick to calculate the RCC/EUR price
 "RCC/EUR": {}
 "ETH4/EUR": {}

[optional] the configured primary feed, such that when "system.EventLoop: feed", this CosineBaseFeed derivative will be configured to drive the main event loop
feed:
 Primary: cosine.pricing.cryptocompare # primary feed to drive the main event loop

the set of configured pricers to pipeline for processing pricing data. Can be used to consume raw price feed data and generate theoretical pricing or other price-derived values
pricers:
 Default: cosine.pricing.pricers.nullpricer # a comma-separated list of pricer modules to load and pipeline in-order for pricing generation
 settings: # the set of pricer-specific configurations
 cosine.pricing.pricers.nullpricer: {} # [pricer-specific] pricer configuration

the configuration for the configured strategy to run
strategy:
 type: cosine.strategies.noddy_floater # the strategy module to load and run under the algo. This contains the core business logic of the algo
 settings: # the set of strategy-specific settings configurations
 cosine.strategies.noddy_floater: # [optional] the noddy_floater strategy settings
 Spread: <val> # [strategy-specific] the % spread to maintain around the spot mid-price, e.g. 0.20
 MaxSpread: <val> # [strategy-specific] the maximum % spread based on dynamic widening of quotes, e.g. 0.50
 instrument_settings: # [strategy-specific] instrument specific strategy settings
 "XTN/EUR":
 MinVol: <val> # [strategy-specific] minimum volume per quoted price step
 MaxVol: <val> # [strategy-specific] maximum volume per quoted price step
 "RCC/EUR": {}
 "ETH4/EUR": {}

See above.

Pricing Feeds

	Structure

	Developing A Custom Feed

Structure

Cosine’s pricing feeds all inherit from the CosineBaseFeed class and are responsible for providing all market data
consumption connectivty for the algo framework. Feeds are designed to be modular, where an algo can be configured to
connect to multiple feed sources simultaneously to obtain pricing for different instruments, or even for the same ones
but providing different data sets perhaps. Feeds are setup via the configuration file (See the Configuration Management section
for more details) with all of their custom feed-specific attributes defined. These config attributes will be automatically set as
member attributes on the class instance on construction via the CosineAlgo. Once a feed instance has been created, the
CosineAlgo calls the feed’s setup() method, which first initialises the pricing cache based on the set of configured
instruments, and then it will attempt to initialise the feed connection. If the system.EventLoop: feed configuration
is set and the specific feed instance is the primary feed, then the feed will run inline in the current process.
If not then the feed will run in a separate worker process managed by the CosineProcWorkers worker pool.

The CryptoCompareSocketIOFeed has been provided as an initial pricing feed implementation, which supports websockets based
pricing updates, with REST based pricing triangulation on pricing ticks, for price triangulation of instrument pairs where required
(i.e. if there is no direct pricing feed provided for this pair by cryptocompare.com [https://www.cryptocompare.com]).
Feel free to check out the code for this feed implementation to familiarise yourself with the structure.

Developing A Custom Feed

Custom feeds can be implemented easily, by inheriting from CosineBaseFeed and overriding the run() method.
The CryptoCompareSocketIOFeed provides an example implementation of how to achieve this.

Once your custom feed has been written and tested, you can leverage it in one of two ways:

	Submit your feed implementation to the main open source repository [https://github.com/oladotunr/cosine] as a pull request (recommended if applicable)

	Or leverage it locally as part of your algo implementation.

To achieve the latter is fairly simple. Assuming you have an algo project setup to use cosine (an example project has been provided
here [https://github.com/oladotunr/cosine-algo]), you can simply configure the module path in the configuration file to
allow the native import mechanics to load your custom module locally at run-time.

For example, let’s assume we have a custom feed called MyCustomFeed in the local project (at the path /myproject/pricing/mycustomfeed.py).
We can setup the following in the configuration file (at /myproject/config.yaml):

...

feeds:
 pricing.mycustomfeed:
 type: stream
 endpoint: wss://mycustomfeed.io
 port: 443
 framework: websockets
 triangulator: https://api.mycustomfeed.io/priceinfo
 triangulator_throttle: 0.5
 instruments:
 "XTN/EUR":
 Ticker: "BTC"
 "RCC/EUR":
 BaseCCY: "ETH"
 "ETH4/EUR":
 Ticker: "ETH"
...

Which should inform CosineAlgo to load the module, instantiate the feed and initialise it for use.

Venues

	Structure

	Developing A Custom Venue

Structure

Cosine’s venues all inherit from the CosineBaseVenue class and are responsible for providing all market exchange
connectivity, on-venue portfolio management and trade execution functionality for the algo framework. Venues are designed
to be modular, where an algo can be configured to connect to multiple venues simultaneously, and can work different sets
of instruments across different venues as part of a comprehensive, complex trading strategy. Venues are setup via the
configuration file (See the Configuration Management section for more details) with all of their custom venue-specific
attributes defined. These config attributes will be automatically set as member attributes on the class instance on
construction via the CosineAlgo. Once a venue instance has been created, the CosineAlgo calls the venue’s setup()
method, which is expected to initialise any connectivity to the remote exchange as well as retrieve and cache any
supported (or at least required) tradable assets/instruments at the destination exchange. The CosineBaseVenue base
class provides access to the CosineProcWorkers worker pool instance, that can be using during setup to instantiate
a worker for any asynchronous exchange connectivity required (if at all).

The BlockExMarketsVenue has been provided as an initial exchange venue integration, which supports trade execution
via REST (with asynchronous response updates), on-venue portfolio management & symbology retrieval. Feel free to check out
the code for this venue implementation to familiarise yourself with the structure.

Developing A Custom Venue

Custom venue implementations can be integrated easily, by inheriting from CosineBaseVenue and overriding the following methods:

	setup()

	teardown()

	update() (optional)

	on() (optional)

	get_instrument_defs

	get_open_orders

	get_inventory

	new_order

	cancel_order

	cancel_all_orders

Custom venues can implement support for these methods either synchronously or asynchronously depending on the anatomy of the remote
exchange connectivity API the venue implementation aims to abstract. The venue must inform the cosine framework of which configuration
it implements via overriding the is_async() property of the CosineBaseVenue class.

To implement asynchronous connectivity, the venue should define a process worker, which it initialises internally and runs as part of
setup() workflow. The CosineProcEventWorker class provides a convenient worker implementation to inherit from, which handles
IPC via a shared event queue. The main process initiates requests directly on the main process and CosineProcEventWorker.EventSlot
listeners are used to capture and handle responses asynchronously. The worker should connect to the exchange via some asynchronous
connectivity protocol and subscribe for the request responses. When the responses arrive they are pushed onto shared queue.
The main process will then leverage the update() method to drive event processing, which pulls queued events and handles them
via the handlers registered with each relevant CosineProcEventWorker.EventSlot.

If an exchange connectivity implementation requires full asynchronous processing, i.e. requests need to be sent asynchronously, then
it maybe best to implement your own CosineProcWorker derivative, with your own CosineProcEventMgr equivalent implementation
to better facilitate the specific workflow required.

The BlockExMarketsVenue provides an example implementation of how to implement a CosineBaseVenue, complete with asynchronous
workflow, via the BlockExMarketsSignalRWorker implementation.

Once your custom venue has been written and tested, you can leverage it in one of two ways:

	Submit your venue implementation to the main open source repository [https://github.com/oladotunr/cosine] as a pull request (recommended if applicable)

	Or leverage it locally as part of your algo implementation.

To achieve the latter is fairly simple. Assuming you have an algo project setup to use cosine (an example project has been provided
here [https://github.com/oladotunr/cosine-algo]), you can simply configure the module path in the configuration file to
allow the native import mechanics to load your custom module locally at run-time.

For example, let’s assume we have a custom venue called MyCustomVenue in the local project (at the path /myproject/venues/mycustomvenue.py).
We can setup the following in the configuration file (at /myproject/config.yaml):

...

venues:
 venues.mycustomvenue:
 Username: trader101324
 Password: !example123456!
 APIDomain: https://api.exchange-venue.io
 ... <venue specific configs> ...
...

Which should inform CosineAlgo to load the module, instantiate the venue and initialise it for use.

Pricers

	Structure

	An Example Use Case

Structure

Cosine’s pricers all inherit from the CosinePricer class and are responsible for providing auxiliary pricing generation
which maybe useful or required depending on the strategy implementation at play. Pricers are more of an optional component
within the algo framework, as not every strategy will need one. Pricers are designed to be pipelined, such that algos can
leverage a chain of them to generate supplementary pricing based on the base pricing retrieved from the feeds. Pricer may
also be used to source external pricing information which can be pulled into the algo to generate pricing related information
(e.g. generated information which takes the feed pricing + externally sourced data as inputs and outputs information used
by the strategy to generate quotes or order working) required for the specific strategy.

An Example Use Case

A typical example use-case could be as follows:

An algo strategy implementation wishes to quote orders in relation to two specific sources of generated pricing information:

	Volume Weighted Average Pricing (VWAP) [https://en.wikipedia.org/wiki/Volume-weighted_average_price]

	Price Volatility [https://en.wikipedia.org/wiki/Volatility_(finance)]

The strategy implementation aims to construct a dynamic quoting behaviour by performing the following actions on each tick:

	Source aggregate market pricing for each instrument from the relevant feed source

	Update the VWAP, feeding the latest feed pricing snapshot as input

	Source the latest Volatility metrics to generate a dynamic quote width (i.e. widen quotes as the volatility increases, within a specified ratio)

	Construct a set of quotes centered around the VWAP

	Apply the generated leans to dynamically widen/narrow the quotes in-response to current volatility

	Apply the new quotes via the order workers

This strategy can be achieved by leveraging a set of pricers to define the structural building blocks for managing the pricing info
generation for use within the strategy.

An implementation here may consist of two pricers:

	VWAPPricer where it’s generate_theo_prices() method override takes the feed snapshot prices as input and calculates the VWAP, setting it into the snapshot and returning it

	VolPricer which takes the feed snapshot prices as input, makes a synchronous internal call to a volatility data source (REST/gRPC/etc), calculates the dynamic quote width info and writes that into the snapshot before returning it

With strategy logic to drive their use similar to the following example code:

in the class CustomStrategy(CosineBaseStrategy)
def update(self):
 self.logger.debug("CustomStrategy - ** update **")

 ...

 # pull prices for instruments...
 self.logger.debug("CustomStrategy - source instrument prices from feed cache...")
 feed = self._cxt.feeds['pricing.mycustomfeed']
 prices = feed.capture_latest_prices(instruments=instruments)

 # massage pricing...
 for p in self._cxt.pricer_seq:
 self.logger.debug(f"CustomStrategy - calc pricing: [{p}]")
 prices = self._cxt.pricers[p].generate_theo_prices(instrument_prices=prices)

 ...

The pricer configuration in this example would be setup as follows:

...

pricers:
 Default: pricing.pricers.vwappricer,pricing.pricers.volpricer # the pipeline ordering of pricers...
 settings:
 pricing.pricers.vwappricer:
 ... <pricer-specific config> ...
 pricing.pricers.volpricer:
 ... <pricer-specific config> ...
...

Pricers are setup via the configuration file (See the Configuration Management section for more details) with all of their custom pricer-specific
attributes defined. These config attributes will be automatically set as member attributes on the class instance on
construction via the CosineAlgo. Once a pricer instance has been created, the CosineAlgo calls the pricer’s setup()
method, which is expected to initialise any external data sourcing or internal setup requirements. The CosinePricer base
class provides access to the CosineProcWorkers worker pool instance, that can be using during setup to instantiate
a worker for any asynchronous data source connectivity required (if applicable).

The NullPricer has been provided as an initial pricer skeleton, mainly to demonstrate how it fits into the wider framework
and how it can be used via pipelining within strategy implementations. Feel free to check out the code for this pricer
implementation to familiarise yourself with the structure.

Strategies

	Structure

	Running Multiple Strategies

	Developing A Custom Strategy

Structure

Cosine’s strategies represent the core business logic drivers for each algo and leverage the rest of the framework components
(venues, orderworkers, feeds, pricers) to achieve their goals. Inheriting from the CosineBaseStrategy class, strategies
are designed to run the main business logic on an event loop. This can be configured to run on every tick (or throttled) of
a specific pricing feed or on a simple timer. Strategies are setup via the configuration file (See the Configuration Management
section for more details) with all of their custom strategy-specific attributes defined. These config attributes will be
automatically set as member attributes on the class instance on construction via the CosineAlgo. Once a strategy instance
has been created, the CosineAlgo calls the strategy’s setup() method, which is expected to initialise any logical
setup required for operation. The CosineBaseStrategy base class provides access to all configured feeds, orderworkers
and pricers to use as part of the strategy logical flow, mostly via the CosineCoreContext passed to it on construction.

The NoddyFloaterStrategy has been provided as an initial strategy implementation (limited), which supports simple price
consumption, pricer pipelining as well as quote updating based on the generated target prices. See the Strategy: Noddy Floater
section for more details.

Running Multiple Strategies

The CosineAlgo is designed to run a single strategy instance within the main algo process. It’s possible to run multiple
strategies within a single algo process, however care must be taken to measure and assess the performance considerations of
this, specifically where a lot of heavy lifting is done. Since all strategies would run their update() methods serially
on each tick of the main event loop, significant latency in update processing may cause undesirable behaviour in the algo.
For simple strategies, a CosineMultiStrategy class has been provided to allow multiple strategies to be run under it.

To configure the CosineMultiStrategy you can setup the config.yaml as follows:

...
strategy:
 type: cosine.strategies.multi_strategy
 settings:
 cosine.strategies.multi_strategy:
 strategies:
 - strategies.localstrategya
 - strategies.localstrategyb
 strategies.localstrategya:
 ... <strategy specific configs> ...
 strategies.localstrategyb:
 ... <strategy specific configs> ...
...

Developing A Custom Strategy

Custom strategy implementations can be integrated easily, by inheriting from CosineBaseStrategy and overriding the following methods:

	setup() (optional)

	teardown() (optional)

	update()

A suite of convenience methods have also been provided in the CosineBaseStrategy class to streamline strategy logic as
needed. Strategies have direct access to all orderworkers, which in-turn are configured and grouped by connected venue. In this
way a single strategy can generate quotes ansd work orders across either a single market or across multiple markets simultaneously
as required by the business logic implemented within it. In a similar vein, strategies have full access to all configured
feeds and can source instrument pricing from one or more feeds as desired.

Once your custom strategy has been written and tested, you can leverage it in one of two ways:

	Submit your strategy implementation to the main open source repository [https://github.com/oladotunr/cosine] as a pull request (not recommended unless widely useful)

	Or leverage it locally as part of your algo implementation. (recommended)

To achieve the latter is fairly simple. Assuming you have an algo project setup to use cosine (an example project has been provided
here [https://github.com/oladotunr/cosine-algo]), you can simply configure the module path in the configuration file to
allow the native import mechanics to load your custom module locally at run-time.

For example, let’s assume we have a custom strategy called MyCustomStrategy in the local project (at the path /myproject/strategies/mycustomstrategy.py).
We can setup the following in the configuration file (at /myproject/config.yaml):

...
strategy:
 type: strategies.mycustomstrategy
 settings:
 strategies.mycustomstrategy:
 ... <strategy specific configs> ...
...

Which should inform CosineAlgo to load the module, instantiate the strategy and initialise it for use.

Strategy: Noddy Floater

	Structure

	Core Logic

Structure

Cosine’s NoddyFloaterStrategy strategy provides a simple limited-functionality example use-case for how to structure and write
your own custom strategies in the cosine algo framework. See the Strategies section for more details in general
around strategies, how they work, how they’re shaped and how then can be developed and integrated.

You can also checkout the example algo project here [https://github.com/oladotunr/cosine-algo] to see how to configure
and run the NoddyFloaterStrategy.

Core Logic

Noddy floater’s core logic is fairly simple and follows the following algorithmic flow on every price tick:

	Retrieve the set of orderworkers for the target venue (BEM)

	Extract the set of instruments associated with each order worker

	Capture the set of cached pricing snapshots for each instrument

	Run the pricer pipeline across all pricing snapshots (to embellish them)

	Generate a set of quotes from the final pricing data

	Push the quotes to the orderworkers to update all order quotes on the markets

Quoting is basically constructed as a butterfly spread around the mid-price for each market, roughly 20% (configurable)
away from the mid-price on either side. Quotes are configured to linearly scale up to a maximum spread price with some
marginal stochastic variance on each price step. Volume is similarly calculated out based on a linear interpolation
between minimum & maximum quote sizes per price level.

This is a very simple implementation that does nothing fancy but proves the basic building blocks for developers to build
more sophisticated trading strategies on the cosine framework.

Troubleshooting

Set up a clean environment

Many things can cause a broken environment. You might be on an unsupported version of Python.
Another package might be installed that has a name or version conflict.
Often, the best way to guarantee a correct environment is with virtualenv, like:

Install pip if it is not available:
$ which pip || curl https://bootstrap.pypa.io/get-pip.py | python

Install virtualenv if it is not available:
$ which virtualenv || pip install --upgrade virtualenv

If the above command displays an error, you can try installing as root:
$ sudo pip install virtualenv

Create a virtual environment:
$ virtualenv -p python3 ~/.venv-py3

Activate your new virtual environment:
$ source ~/.venv-py3/bin/activate

With virtualenv active, make sure you have the latest packaging tools
$ pip install --upgrade pip setuptools

Now we can install cosine...
$ pip install --upgrade cosine-crypto

Note

Remember that each new terminal session requires you to reactivate your virtualenv, like:
$ source ~/.venv-py3/bin/activate

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Cosine

 		
 Quickstart

 		
 Installation

 		
 Using Cosine

 		
 Command Line Arguments

 		
 Configuring The Algo

 		
 Custom Strategies

 		
 Custom Connectivity

 		
 Overview

 		
 Architecture

 		
 Event Loop

 		
 Multiprocessing

 		
 Configuring The Algo

 		
 Custom Strategies

 		
 Custom Connectivity

 		
 Configuration Management

 		
 Configuration Loading

 		
 Configurable Attributes

 		
 Pricing Feeds

 		
 Structure

 		
 Developing A Custom Feed

 		
 Venues

 		
 Structure

 		
 Developing A Custom Venue

 		
 Pricers

 		
 Structure

 		
 An Example Use Case

 		
 Strategies

 		
 Structure

 		
 Running Multiple Strategies

 		
 Developing A Custom Strategy

 		
 Strategy: Noddy Floater

 		
 Structure

 		
 Core Logic

 		
 Troubleshooting

 		
 Set up a clean environment

_static/up-pressed.png

_static/up.png

_static/plus.png

